BCA/M-23

20576

MATHEMATICAL FOUNDATION-I Paper-BCA-105

Time: Three Hours] [Maximum Marks: 80

Note: Attempt *five* questions in all. Question No. 1 is compulsory. Select *one* question each from Unit-1 to Unit-IV. All questions carry equal marks.

Compulsory Question

- 1. (a) Find the symmetric difference of sets A and B where $A = \{1, 2, 4, 5\}$ and $B = \{2, 5, 8, 9\}$.
 - (b) Find the differential equation of all parabolas whose axes are parallel to y-axis.
 - (c) Use tenth tables to show $(p \land q) \land \neg (p \lor q)$ is a contradiction.
 - (d) Show that matrix A satisfies the equation f(x) = 0 where

A =
$$\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $f(x) = x^2 - 5x + 7$.

(e) Differentiate
$$\frac{x^2}{1+x^2}$$
 w.r.t. x^2 .

UNIT-I

- **2.** (a) How many different words can be formed with the letters of the world 'BHARAT'?
 - (i) In how many of these B and H are never together?
 - (ii) How many of these begin with B and end with T?
 - (b) If $y \log x = x y$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$
- 3. (a) Examine the continuity of

$$f(x) = \begin{cases} \frac{x^{1/x}}{e^{1/x} + 1} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \text{ at } x = 0.$$

(b) Determine whether the set {1, 2, 4, 8, 16} is a lattice with the relation of divisibility.

UNIT-II

- **4.** (a) Solve the differential equation $x \frac{dy}{dx} y = \sqrt[x]{x^2 + y^2}$.
 - (b) Solve $(x^2 + y^2 + 2x) dx + 2y dy = 0$.
- 5. (a) Solve the differences equation $\frac{d^2y}{dx^2} + a^2y = \sin ax$.

(b) Solve
$$(x^2D^2 - 3xD + 5)y = \sin(\log x)$$
 where
$$D = \frac{d}{dx}, \text{ and } D^2 \frac{d^2}{dx^2}.$$

UNIT-III

- **6.** (a) Prove that $p \Rightarrow (q \land r) \equiv (p \Rightarrow q) \land (p \Rightarrow r)$ by constructing truth tables, where p, q, r are statements.
 - (b) Using principle of mathematical modulation to prove that

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{3.4} + \dots + \frac{1}{3.4} = \frac{n}{n+1}$$

- 7. (a) If H₁ and H₂ are two subgroups of G, then H₁ of H₂ is also a subgroup of G.
 - (b) Define Ring, Subring, Ideal and Field with an example.

UNIT-IV

8. (a) If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 then find \vec{A} and show that

$$\vec{A} = A^2$$
.

(b) Reduce the matrix
$$A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0 \end{bmatrix}$$
 to $[I_3O]$.

Hence find the rank of A.

9. (a) Find the eigen value of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$. Also

find the eigen vector corresponds to any one of eigen value.

(b) Prove that eigen values of a Hermitian matrix are all real.

