MATHEMATICAL FOUNDATION-I

Paper-BCA-105

Time : Three Hours]
[Maximum Marks : 80
Note : Attempt five questions in all. Question No. 1 is compulsory. Select one question each from Unit-1 to UnitIV. All questions carry equal mos.

Compulsory aestion

1. (a) Find the symmetridifference of sets A and B where $A=\{1,2,4,5\}$ and $B=\{2,5,8,9\}$.
(b) Find the differential equation of all parabolas whose axes are parallel to y-axis.
(c) Use tenth tables to show $(p \wedge q) \wedge \sim(p \vee q)$ is a contradiction.
(d) Show that matrix A satisfies the equation $f(x)=0$ where
$\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ and $f(x)=x^{2}-5 x+7$.
(e) Differentiate $\frac{x^{2}}{1+x^{2}}$ w.r.t. x^{2}.

UNIT-I

2. (a) How many different words can be formed with the letters of the world 'BHARAT' ?
(i) In how many of these B and H are never together ?
(ii) How many of these begin with B and end with T?
(b) If $y \log x=x-y$, prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
3. (a) Examine the continuity of

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{1 / x}}{e^{1 / x}+1} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} \text { at } x=0\right.
$$

(b) Determine whether the set $\{1,2,4,8,16\}$ is a lattice with the relation of divisibility.

UNIT-II

4. (a) Solve the differential equation $x \frac{d y}{d x}-y=\sqrt[x]{x^{2}+y^{2}}$.
(b) Solve $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.
5. (a) Solve the differences equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sin a x$.
(b) Solve $\left(x^{2} \mathrm{D}^{2}-3 x \mathrm{D}+5\right) y=\sin (\log x)$ where $\mathrm{D}=\frac{d}{d x}$, and $\mathrm{D}^{2} \frac{d^{2}}{d x^{2}}$.

UNIT-III

6. (a) Prove that $p \Rightarrow(q \wedge r) \equiv(p \Rightarrow q) \wedge(p \Rightarrow r)$ by constructing truth tables, where p, q, r are statements.
(b) Using principle of mathematical modulation to prove that
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots .+\frac{1.2}{(x+1)}=\frac{n}{n+1}$
7. (a) If H_{1} and H_{2} are toro subgroups of G, then H_{1} of H_{2} is also a subgroup of G.
(b) Define Ring, Subring, Ideal and Field with an example.

UNIT-IV

8. (a) If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$ then find \vec{A} and show that
$\overrightarrow{\mathrm{A}}=\mathrm{A}^{2}$.
(b) Reduce the matrix $\mathrm{A}=\left[\begin{array}{cccc}1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0\end{array}\right]$ to $\left[\mathrm{I}_{3} \mathrm{O}\right]$.

Hence find the rank of A.
3
[P.T.O.
9. (a) Find the eigen value of the matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$. Also find the eigen vector corresponds to any one of eigen value.
(b) Prove that eigen values of a Hermitian matrix are all real.

